POLYETHYLENE BIODIGESTERS (PBD) *Production of biogas and organic fertilizer from animal manure*

Integrated Bio-system Network International Organization of Biotechnology and Bioengineering Francisco X. Aguilar Agronomic Engineer jaguilar@gye.satnet.net francisco.aguilar@royagcol.ac.uk

Illustrations adapted from BOTERO, R.; AGUILAR, F.; PRESTON, T. 1999. The biodigester. <u>In</u> Toward a better use of our natural resources. EARTH University, Costa Rica. 28

PROBLEM STATEMENT

Use of firewood for cooking

- Environmental impact (CO₂, forest)
- Development of illnesses
- Demand of labor

Non appropriate management of excrements

- Contamination of sources of water
- Production of gases (sulphur, methane)
- Increase of vectors of human and animal diseases
- Dissemination of diseases and weeds
- Loss of nutrients

THE PROBLEMATIC

MACRONUTRIENT COMPOSITION OF CERTAIN TYPES OF MANURE

Manure	Composition (%)		
	Ν	Ρ	K
Human faeces ^a	1.0	0.2	0.3
Cattle faeces ^a	0.3	0.1	0.1
Dairy manure ^b	0.7	0.1	0.5
Pig manure ^b	1.0	0.3	0.7
Poultry manure ^b	1.6	0.5	0.8

Adapted from: Greenland (1997):^a Qi-xiao Wen (1984) ^b Tisdale and Nelson (1966)

MANURE COMPOSITION

BIODIGESTION PROCESS

- <u>Conditions</u> for biogas
 production
- Production of <u>methane</u>
- Production of organic fertilizer - <u>effluent</u>

BIODIGESTION PROCESS

CONDITIONS FOR BIOGAS PRODUCTION

- **Daily application** • Fresh excrement
- **Temperature range**

30-35°C internal / x <15°C

- C/N rate 30/1
- methanogenic bacteria Anaerobic system
- pH
- **Time frame** •

6.7-7.5

PRODUCTION OF BIOGAS AND ORGANIC FERTILIZER

WHY DAILY APPLICATION? Continuous anaerobic digestion process

- 1. Acid-forming-liquefaction
- Bacteria hydrolyse and ferment organic compounds (carbohydrates, lipids, proteins, etc.)
- High production of acids (especially acetic acid)
- pH ranging from 5.1 to 6.8
- Reduction in volume

2. Gasification

- Organic acids used to produce methane gas (acetic acid ~ 70%)
- Optimum performance when temperature 30°C
- pH ranging from 7.2 to 7.4
- If there is rise or fall of temperature more than 10°C from the optimum value listed above, the bacteria stop working and methane gas production stops altogether.

PRODUCTION AND USES OF BIOGAS

Chemical composition

Amount of biogas produced

Applications

- Lighting
- Engines
- Cooking
- Heating

BIOGAS APPLICATIONS

Chemical composition of biogas

Component		Percentage
Methane	CH_4	40-70
Carbonic gas	CO_2	30-60
Hydrogen	H_2	1.0
Nitrogen	N_2	0.5
Carbon monoxide	CO	0.1
Oxygen	O ₂	0.1
Hydrogen sulphur	SH_2	0.1

Adapted from Instituto de Investigaciones Eléctricas de México, 1980; ISAT & GTZ, 1999.

CHEMICAL COMPOSITION OF BIOGAS

F. X. Aguilar, 2001

Back to uses of biogas

Production of biogas

Biodigester: 10 meters length , 3 meters circumference

<u>FACTS</u> Total volume Biogas bell (25%) Liquid phase (75%)	7.2 m ³ 1.8 m ³ 5.4 m ³
Biogas produced every day 35% of liquid phase	1.9 m ³
Biogas burned per hour (2 stoves)	150 L
Total # of cooking hours	12.7 h

HOW MUCH MANURE IS REQUIRED?

How much manure is required

Liquid phase	5400.0 L
50 days inside the biodigester	
<u>Material added every day</u>	108.0 L
Water (80%)	86.4 L
Manure (20%)	21.6 L
Fresh manure has 15% of D.M mixture 3%	

Amount of fresh manure produced by different domestic animals

Animal	Fresh manure (Kg)*	<u># animals</u>
Bovine	8	1
Equine	7	1
Sheep	4	6
Pig	4	6
* Per every 1	00 Kg of weight	

Amount required: 22 Kg of fresh manure

Adapted from Botero, 1997

Back to uses of biogas

Animals needed

EFFLUENT APPLICATIONS

Benefits

- No loss of nutrient content than fresh manure <u>(composition)</u>
- No dissemination of diseases/weeds through the manure
- No odor

<u>Uses</u>

- Organic fertilizer
- Effective microorganisms
- <u>Aquatic plants</u> (*Eichhornia spp.,* Lemnaceae, *Azolla spp*.)
- Fish production

Chemical composition of effluent

	Component (% dry matter)		
Nutrient	Fresh manure	Biodigester Effluent	
Nitrogen	2.0	2.6	
Phosphorus	0.6	1.4	
Potassium	1.0	1.7	

Adapted from Gómez y Viniegra, 1979

Effluent composition

Nitrogen and Phosphorus content of different species of aquatic plants

Species	N content (%)*	P content (%)*
Azolla pinnata	3.85	0.72
<i>Pistia</i> sp.	1.38	0.43
<i>Ipomoea</i> sp.	2.90	1.11
Eichornia crassipes	1.62	0.65

* Dry weight content Adapted from:Singh and Mandal, 2000

Aquatic plants

LOW COST BIODIGESTER Polyethylene Biogas Plant

3. Limitations 4. Costs

5. Conclusions

Installation of a low cost biodigester

MATERIALS REQUIRED TO INSTALL A POLYETHYLENE BIOGAS PLANT

-28 meters of natural polyethylene plastic tube, 1000 gage and 1.5 or 2 meters width.

-2 cement or clay pipes, 1 meter length, 12 inches width.

- -2.5 meters of transparent plastic hose of 1 $\frac{1}{4}$ inches in diameter
- -1 PVC screw (1 inch in diameter)
- -1 PVC cap adapter (1 inch in diameter)
- -2 90° PVC elbows (1 inch in diameter)
- -1 meter of pressure PVC pipe (1 inch in diameter)
- -1 flat PVC cap (1 inch in diameter)

-2 round plastic disks (20-15 centimeters in diameter with a central hole of 1 inch)

- -1 transparent plastic bottle 1 gallon of capacity
- -3 used tires tubes (rubber belts)
- -8 used plastic fertilizer sacks
- -1 galvanized metallic pipe, 11/2 inch in diameter 50 centimeters length
- -1 tube of PVC glue
- -1 steel wool (iron spongy)

-An automobile or motorcycle as source of exhaust

1 plastic hose to take exhaust from the car to the place where the biodigestor will be installed

Step 1. DIAGRAM OF THE GRAVE WHERE THE BIODIGESTER WILL BE PLACED

Step 2. PREPARATION OF THE PLASTIC BAG FOR THE PBD

Step 3. SETTING THE OUTGOING BIOGAS VALVE

STEP 4

Step 4. SETTING THE SAFETY VALVE

Step 5. FILL UP THE BIOGAS PLANT WITH EXHAUST AND WATER

Step 6. MANAGEMENT OF THE BIOGAS PLANT

Step 7. CONNECTION TO THE BURNER

Back

LIMITATIONS of/for PBD

- Daily management
- Quality of the plastic
- Comparative costs with other sources of energy due to subsidies
- Methane: Flame = 870°C Ignition 700 °C

Limitations of/for PBD

Comparison of calorific values of different fuel gases

Gas	Calorific value (Joules cm ⁻³ - MJ/m ³)	
Methane	33.2 - 39.6	
Biogas	20.0 - 26.0	
Natural gas	38.9 - 81.4	
Propane	81.4 - 96.2	
Butane	107.3 - 125.8	

Adapted from: Meynell, 1972; Natverkstan, 1999

Volumes of other fuels equivalent to 1m³ (1000 L) of

biogas (5500 kcal)

Fuel	Volume (L)
Diesel	0.62
Petrol (gasoline)	0.70
Liquid butane	0.87
Natural gas	0.57

Adapted from: Meynell, 1972; Natverkstan, 1999

LIMITATIONS

COST OF PBD INSTALLATION

Plastic, ends (buckets or cement pipes), labour, PVC connections, fence, simplified stove

Country	Costs (\$)
Costa Rica	120 ^a
Ecuador	130 ^b
Sri Lanka	140 ^b

^a Use of plastic buckets for both ends. ^B Use of cement pipes (1 meter long, 12 inches width)

 Option for excrement management

• Clean, cheap and simple technology

 Diminishment of environmental impact

 Direct economical benefits

CONCLUSIONS