<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <title>PhysOrg Mobile: 'Mini-cellulose' molecule unlocks biofuel
      chemistry</title>
    <script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/osd.js"></script>
    <p><strong>A team of chemical engineers at the University of
        Massachusetts Amherst has discovered a small molecule that
        behaves the same as cellulose when it is converted to biofuel.
        Studying this 'mini-cellulose' molecule reveals for the first
        time the chemical reactions that take place in wood and prairie
        grasses during high-temperature conversion to biofuel. The new
        technical discovery was reported in the January 2012 issue of
        the journal <i>Energy & Environmental Science</i> and
        highlighted in <i>Nature Chemistry</i>. </strong></p>
    <p>The "mini-cellulose" molecule, called α-cyclodextrin, solves one
      of the major roadblocks confronting high-temperature biofuels
      processes such as pyrolysis or gasification. The complex chemical
      reactions that take place as wood is rapidly heated and breaks
      down to vapors are unknown. And current technology doesn't allow
      the use of computer models to track the chemical reactions taking
      place, because the molecules in wood are too large and the
      reactions far too complicated. <br>
      <br>
      Paul Dauenhauer, assistant professor of chemical engineering and
      leader of the UMass Amherst research team, says the breakthrough
      achieved by studying the smaller surrogate molecule opens up the
      possibility of using computer simulations to study biomass. He
      says, "We calculated that it would take about 10,000 years to
      simulate the <a class="textTag"
        href="http://www.physorg.com/tags/chemical+reactions/" rel="tag">chemical
        reactions</a> in real <a class="textTag"
        href="http://www.physorg.com/tags/cellulose/" rel="tag">cellulose</a>.
      The same biofuel reactions with 'mini-cellulose' can be done in a
      month!" <br>
      <br>
      Already his team has used insight from studying the
      "mini-cellulose" to make significant progress in understanding
      wood chemistry, Dauenhauer says. Using the faster computer
      simulations, they can track the conversion of wood all the way to
      the chemical vapor products. These reactions include creating
      furans, <a class="textTag"
        href="http://www.physorg.com/tags/molecules/" rel="tag">molecules</a>
      that are important for the production of biofuels. <br>
      <br>
      The discovered reactions occurring within wood will serve as the
      basis for designing advanced biofuel reactors, Dauenhauer says.<br>
    </p>
    <p><br>
      [See the rest of the article at:]<br>
    </p>
    <p><a class="moz-txt-link-rfc2396E" href="http://pda.physorg.com/news/2012-02-mini-cellulose-molecule-biofuel-chemistry.html"><http://pda.physorg.com/news/2012-02-mini-cellulose-molecule-biofuel-chemistry.html></a><br>
      <br>
    </p>
    <link title="" rel="top" href="/">
    <link title="" rel="top" href="/">
    <base href="http://www.physorg.com/">
    <link title="PhysOrg News" rel="alternate"
      type="application/rss+xml" href="http://www.physorg.com/rss-feed/">
    <style type="text/css">     
                html, body {
                                background: #FFFFFF; 
                                font-family: Verdana, Arial, Helvetica, sans-serif; 
                                font-size: 0.9em;
                                margin: 0; 
                                padding: 1px;     
                                }
                h1 { font-size: 1.2em;}
                #logo {text-indent:-99999px; height: 36px; background: url('<a class="moz-txt-link-freetext" href="http://pda.physorg.com/tmpl/img/logo.gif">http://pda.physorg.com/tmpl/img/logo.gif</a>') no-repeat; }                 
                hr { color: #9999FF; background-color: #9999FF; height: 2px; }          
                p {     margin: 4px;}
                p.nav  { background-color: #e2e9f3;
                         border-bottom:1px solid #5f789c;
                         margin: 0;
                         padding: 1px 5px }       
                p.nav a {
                 display: block;
                 width: 100%;
                }
                div.pic{
                        font-weight: normal;
                        font-style: italic;
                        font-size: 0.9em;
                        text-decoration: none;
                        text-align: center;
                        color: gray;   
                        margin: 10px;
                }         
                .datum {color:#808080; }
                
                a:link, a:visited, a:active {text-decoration: none;}
                a:hover {color:  #3D358A; text-decoration: underline;}
                
        </style>
  </body>
</html>