Biochar in Field Trials & Characterization Studies

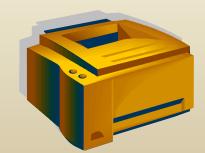
Kurt Spokas

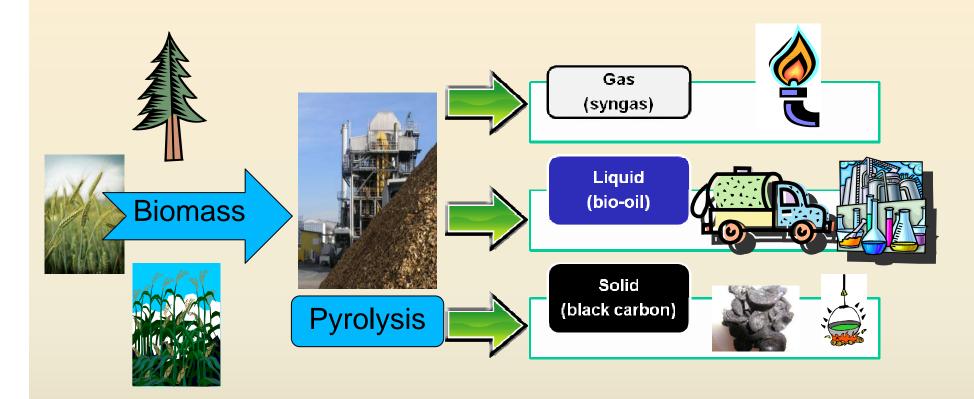
Research Soil Scientist USDA-ARS St. Paul, MN Email: kurt.spokas@ars.usda.gov

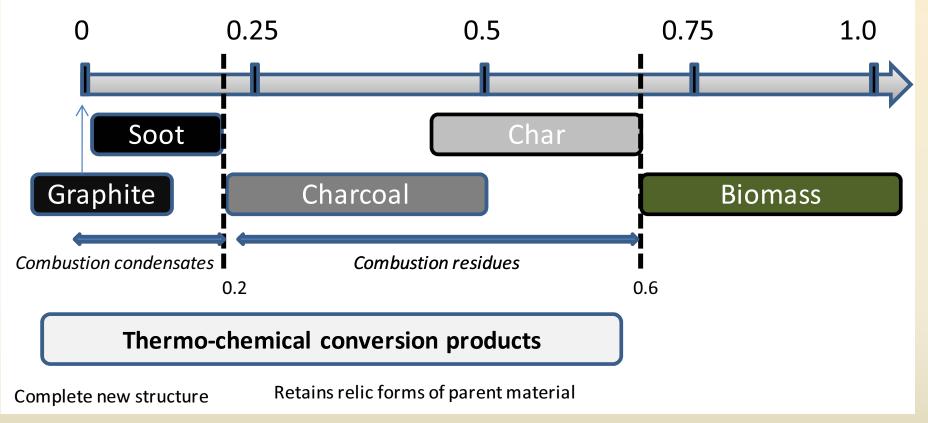
ISTC March 1, 2012

Biochar What is it ?

Black Carbon


•*Black carbon* is the <u>range</u> of solid residual products resulting from the chemical and/or thermal conversion of any carbon containing material (e.g., fossil fuels and biomass) (Jones et al., 1997)

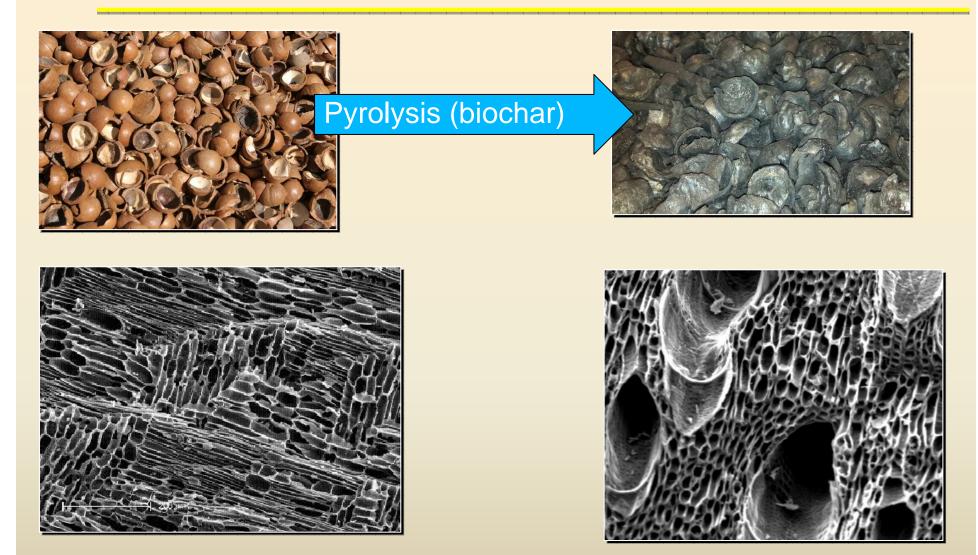



Overview of Pyrolysis

Building Blocks→ Tear apart and → Form new compounds reorganize and chemicals

Black Carbon "Spectrum"

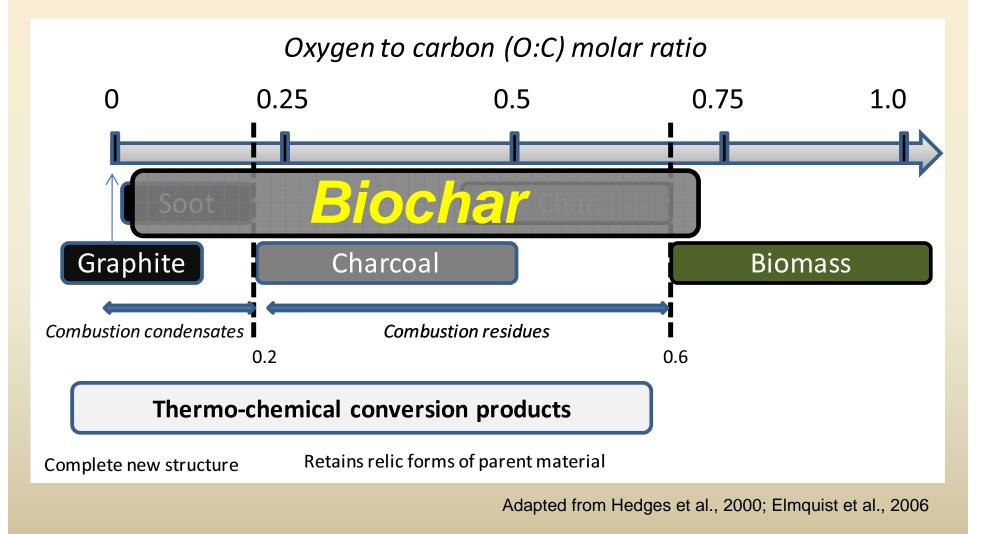
Oxygen to carbon (O:C) molar ratio



Adapted from Hedges et al., 2000; Elmquist et al., 2006; Spokas, 2010

Problem \rightarrow Lack of nomenclature uniformity

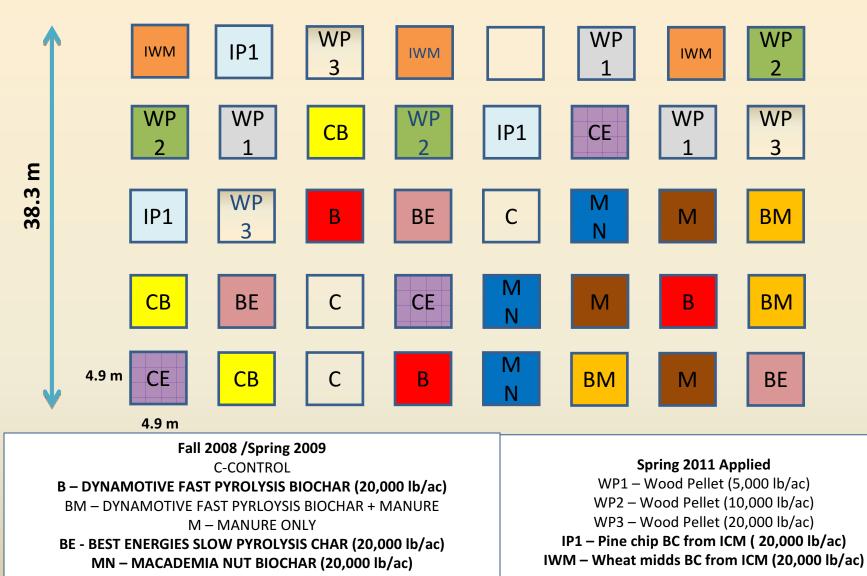
(Jones et al., 1997)


Biochar: Structure

•Biochar : Majority still show relic structures in the biochar

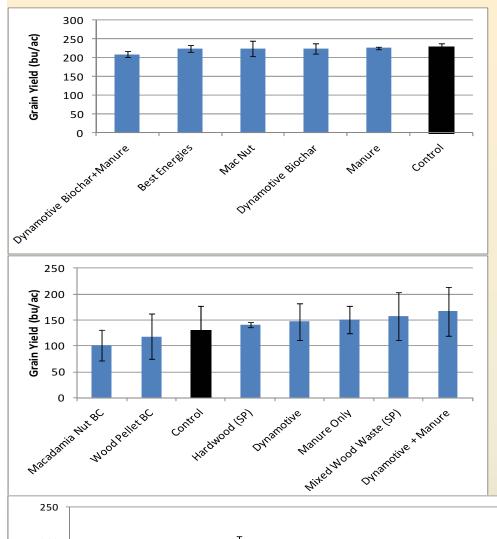
Biochar: Black Carbon Continuum

Biochar – Spans across <u>multiple divisions</u> in the Black C Continuum However, <u>biochar is NOT a new division or material</u>...


Multi-location USDA-ARS Effort

- •Dynamotive Biochar Project (started Fall 2008)
 - CHARnet :
 - Meeting in Ames, IA (Feb 2012)
 - Continuing project at least another year.
 - No significant differences noted in corn yield
 - 3 manuscripts planned –

•Soil quality, agronomic impacts, and GHG summary across the 6 locations

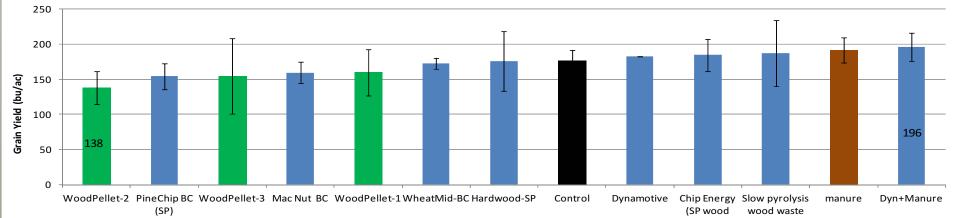


Rosemount, MN : Biochar Field Plots (mini-plots) : 7 different biochars currently

Spring 2010 applications

CE - Chip Energy (wood pellet biochar) (20,000 lb/ac) CB - Cowboy Lump (hardwood) Charcoal (20,000 lb/ac) 2012 – Variable rate wood pellet BC (?) Wheat straw BC (?)

2009 Grain Yields


(no statistically significant differences)

2010 Grain Yields

(no statistically significant differences) Lower yields than 2009 (no-till residue)

2011 Grain Yields

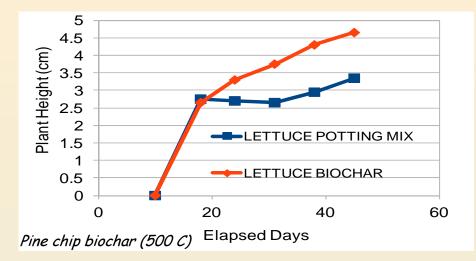
(only sig. dif b/w wood pellet-2 and dyn+manure)

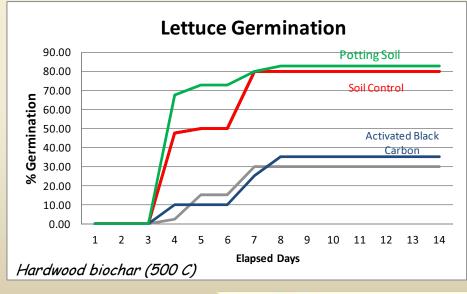
Variability in Biochar Composition

Characteristic	Florence, SC	Kimberly, ID	imberly, ID St. Paul				St. Paul
	% (dry)						% dry
			Barrel A	Triplicates from the same barrel (B) sent to Hazen			Barrel C
Carbon	72.55	67.52	74.12	62.88	69.52	63.86	61.81
Hydrogen	2.84	3.18	2.50	2.80	3.06	3.03	
Nitrogen	0.34	0.15	0.11	0.32	0.32	0.22	0.21
Organic N							0.21
Sulfur	0.02	0.01	0.01	0.01	0.01	0.01	n.d.
Potassium (K2O)	0.74	0.41					0.63
Calcium	0.52	0.37					0.42
Iron	2046 (ppm)	1400 (ppm)					7353 (ppn
Nickel	8.5 (ppm)	4.9 (ppm)					14.9 (ppm
Zinc	6.7 (ppm)	14 (ppm)					13.2 (ppm
Cadmium	0.2 (ppm)	<0.05 ppm					1.1 (ppm)
Magnesium	741 (ppm)	1500 (ppm)					0.04 %
Manganese	113 (ppm)	118 (ppm)					199 (ppm
pH DI water slurry)	5.7	6.8	1.4	5.8	4.5	5.5	0.8
Oxygen+	15.33	15.15	17.76	11.84	13.06	11.78	
Ash	8.92	14.0	5.50	22.15	14.03	21.1	15.80
Volatile	33.69	70.7	54.55	24.52	26.09	26.06	
Fixed C	57.71		39.95	53.33	56.88	52.82	
O/C	0.158	0.168	0.18	0.14	0.14	0.14	
H/C	0.466	0.561	0.47	0.53	0.53	0.57	1

Laboratories (Omaha, NE)

+By difference


MN Department of Agriculture Project



•Varied responses of different crops to various biochars

• Different soil and biochar combinations have different impacts: Some positive and some negative

•Bioaccumulation of sorbed organics on biochar into specialty crops: PAH compounds focus

No-BC compared to BC (macadamia nut shell – sweet corn)

No Biochar Amendment

Biochar Amendment

What influences sorbed PAH levels?

- Results to date have been identical to black carbon literature:
 - Moisture content of the biomass
 - Oxygen presence during production and/or cooling
 - Combustion \rightarrow
 - Presence of "flames" during pyrolysis [↑ levels]

Table 1. The US EPA's 16 priority-pollutant PAHa, chemical structure, CAS number, and chemical formula.

	Polycyclic aromatic hydrocarbon	Structure	CAS#	Chemical
	(PAH)			Formula
1	Naphthalene	\bigcirc	91-20-3	C10Hs
2	Acenaphthene		83-32-9	C12H10
3	Acenaphthylene		208-96- 8	C12H8
4	Anthracene	()))	120-12- 7	<u>C14H10</u>
5	Phenanthrene	œ	85-01-8	<u>C14H10</u>
6	Eluorene		86-73-7	<u>C13H10</u>
7	Eluoranthene		206-44- 0	<u>C16H10</u>
8	Benzo(a)anthracene	900	56-55-3	<u>CıaHı</u> 2
9	Chrysene	000	218-01- 9	<u>C18H12</u>
10	Extene	89	129-00- 0	<u>CieHio</u>
11	Benzo(a)pyrene		50-32-8	C20H12
12	Benzo(b)fluoranthene	alh	205-99- 2	C20H12
13	Benzo(k)fluoranthene	COTĂ	207-08- 9	C20H12
14	Dibenz(a.h)anthracene		53-70-3	C22H14
15	Benzo(g.h.i)pervlene	, Alton	191-24- 2	C22H12
16	Indeno[1,2,3-cd]pyrene	æ,	193-39- 5	C22H12

ASA biochar group

•Meeting will be in October 21-24, 2012 at the ASA/SSSA/CSSA annual meetings in Cincinnati

- "Biochar researcher of the year award" (nominations being accepted)
- Graduate Student Award
- Best Presentation Award Voted on by attendees
- •Be sure to submit abstracts to :

Biochar Effects On Soils, Plants, Waters, and Greenhouse Gas Emissions

•We will be electing new "vice-president" of the biochar community in Cincinnati