Down Feed Rocket Stove

By: Matthew Gerding, Michael Haemmerle, Nathan Lackey, Sam McTurner, and Cory Sharkey Seal Team 6

Objective Statement

Design and build a family-size stove that is clean; can burn wood of a variety of types, sizes, and moisture contents; and can be used with multiple pot sizes for use in third world countries.

Background

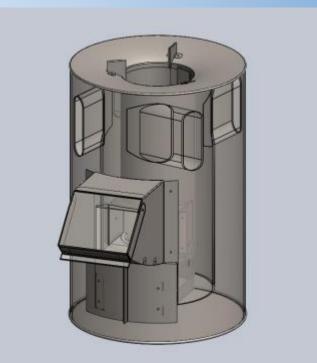
- 2.5-3 billion people still use biomass fires to cook^[1]
- Current cooking methods:
 - Three stone method
 - Traditional stove
- 600,000 people die as a result of indoor air pollution each year, in India alone.^[2]
- What are people doing about it?
 Industrialized stoves for one pot size
 Designed only for ideal conditions
 dry, specially cut lumber

Stove Tiers: Crisis in 3rd World

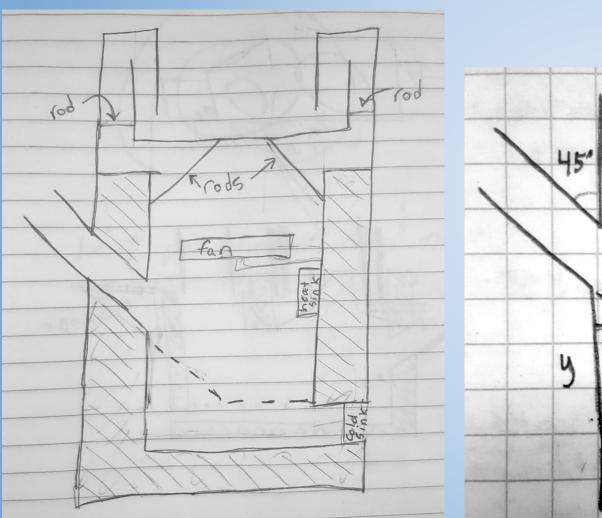
- Tier 0 Open Fire / Poor Stove, Smoky, & Inefficient (<15%)
- Tier 1 Measurable Improvement
- Tier 2 Substantial Improvement
- Tier 3 Clean and Efficient
- Tier 4 Very Clean & Very Efficient (>45%), Often Impractical

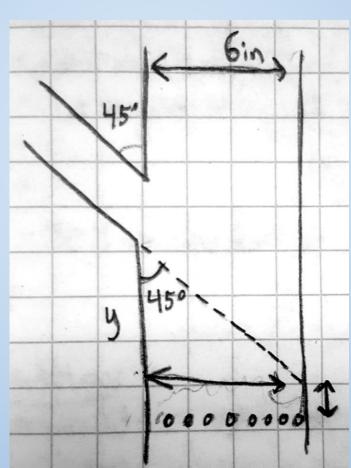
Design Process

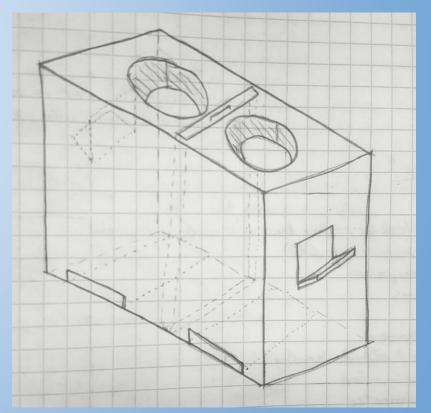
- **1.Determine design objectives**
- **2.Review current down feed stove designs**
- **3.Brainstorm potential ideas**
- 4.Build Prototype
- 5.Test and analyze
- 6.Modify prototype
- 7.Repeat Steps 4-6 to determine ideal parameters


Design Objectives

- Clean burning (pass eye-nose test, IAP meter)
- Capable of supporting any pot shape or size (within reason)
- Able to burn wet wood (30-35% moisture)
- Quick boil time (20 min)
- Inexpensive (less than current model by InStove)
- Efficient (> 30%)
- Burn wood up to 2.5" in diameter & 3' in length
- Self Feeding


Review of Current Downfeed Designs


Instove's 20L Downfeed Stove


Northern Arizona University Clean Burning Stove Team

Brainstorming Potential Ideas

Test Process: High Power

High Power Phase: Heat Water to a Boil

- Time to boil
- Smoke evaluation (IAP meter or Eye-Nose Test)
- Mass of water evaporated
- Mass of fuel burned
- Temperature change of water
- 4 types of wood used:
 - Dry standard lumber
 - Dry sticks
 - Dry large sticks
 - Wet wood

Test Process: Low Power

Low Power Phase: Simmer for 45 minutes

- Mass of water evaporated
- Mass of fuel burned
- Number of times fire was tended
- Smoke evaluation (IAP meter or Eye-Nose Test)

Efficiency Calculations

- Determine energy extracted from wood.
- Determine energy absorbed by water.
- Calculate efficiency by dividing energy in water by energy in wood.
- Time to boil is corrected to be comparable between tests
 - Standardizes test to 5kg of water with initial and boil temperatures of 20°C and 100°C

 $H_{IHV} = (20634 - C_{moisture} \times 23000) [J/g]$ $E_{wood,HP} = wood_{consumed,HP} \times H_{LHV}[J]$ $E_{wood LP} = wood_{consumed LP} \times H_{LHV}[J]$ $TTB_{corrected} = \frac{TTB_{measured} \times 5000 \times 80}{m_{max}(T_{hoil} - T_{initial})} [s]$ $E_{water,HP} = m_{water} \times 4.186 (T_{boil} - T_{initial}) [J]$ $E_{water,LP} = 2260(m_{initial} - m_{final})[J]$ $\eta_{HP} = \frac{E_{water, HP}}{E_{wood}}$ $\eta_{LP} = \frac{E_{water,LP}}{-}$ $\eta_{total} = \frac{E_{water,HP} + E_{water,LP}}{E_{wood,HP} + E_{wood,LP}}$

Initial Prototype: Beal

Design Goal: Balance of power and efficiency Purpose: Gain experience with testing a stove Build Method: Stock part to build stove

- 6" diameter chamber
- 16" chamber height
- Metal ductwork for chamber
- 2 layers of tin foil insulation

Results: Beal

High Power Efficiency: 17.6%Low Power Efficiency: 13.0%Overall Efficiency: 15.1%Corrected Time to Boil: 17:45min

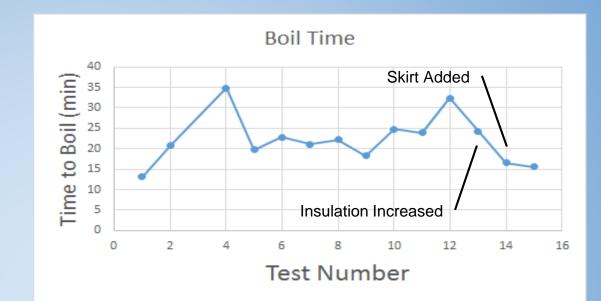
Second Prototype: Seal

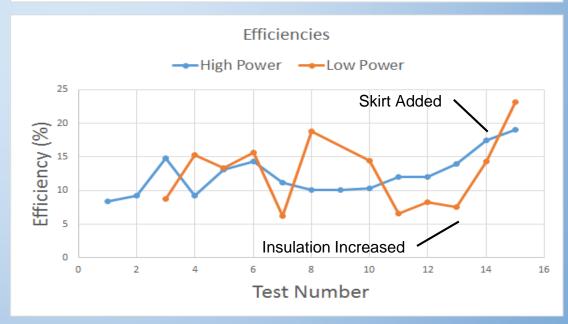
<u>Design Goal:</u> Easily Modifiable <u>Purpose:</u> Test how parameters affect efficiency

Build Method: Sheet metal rolled and welded

- 6" diameter combustion chamber
- 24" (initial) chamber height
- Burner plate and cone for pot support
- Chamber and chute were welded
- 1" air holes at base (n=6)
- Tin foil insulation

Seal: Design Continued

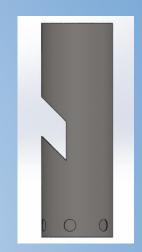




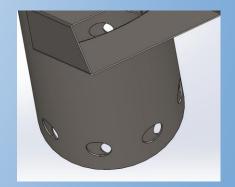
Results: Seal

Modified Parameters:

- Chamber Height
- Grate Height
- Airflow
- Pot Support Type
- Skirt



Results Continued


Conclusions:

- 5" grate height much better
- Air had negligible effect
- Higher pot support led to increased cleanliness
- Shorter chamber height better efficiency, but smokier
- Skirt improved efficiency and cleanliness

Chamber Height (in)	Average Overall Efficiency
24	13.07
22	10.74
20	10.56
18	18.50

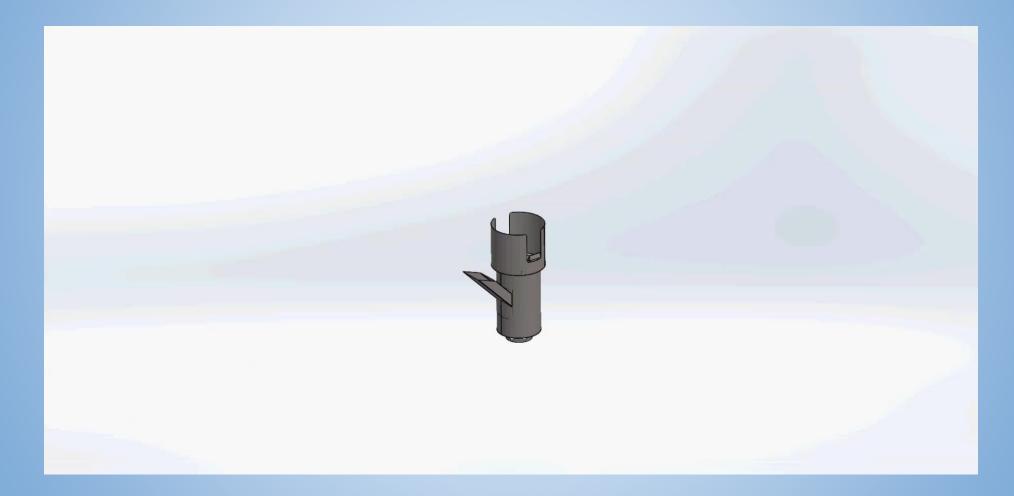
Air Openings	Average Overall Efficiency
Less than 50%	12.69
More than 50%	12.25

Results Continued

Pot	Average
Support	Overall
Туре	Efficiency
3 1/16th	11.31
5 1/16th	11.17
Cone	13.35

Skirt	Average Overall Efficiency
None	11.69
6"	18.50

Grate Height (in)	Average Overall Efficiency
3	8.83
5	13.32


Feal: Design

Design Goal: Mass Production Ready Stove Purpose: Combine optimal parameters determined from Seal into a single design Build Method: Sheet metal rolled and welded

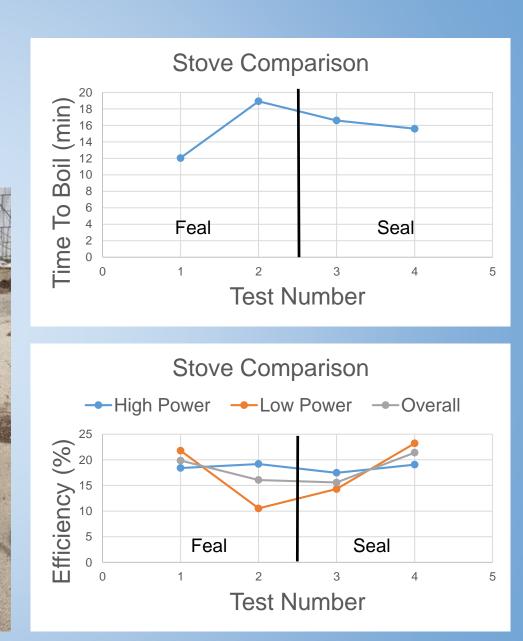
- 6" diameter chamber
- 10" diameter outer wall
- 18" chamber height
- 1" air holes at base (n=5)
- 2" vermiculite insulation
- 12" diameter heat skirt (10" tall)

Feal: Design Continued

Feal: Design Continued

Feal: Building Process

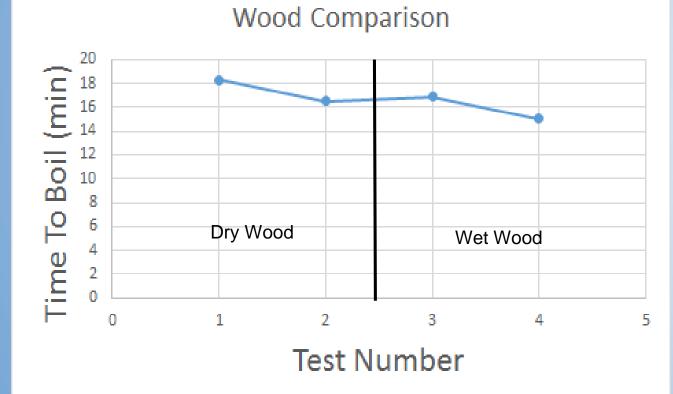
Materials:


- 24"x48" 22-gage steel (n=3)
- Vermiculite (12 quarts)
- 6" diameter expanded metal grate
- 5" bolts (n=4)
- Nuts and washers (n=8)
- Furnace Putty

Building:

- Create Parts in SolidWorks
- Cut steel to size
- Roll and bend steel
- Weld chambers and chute
- Fill outer chamber with vermiculite
- Attach top plate, risers, and heat skirt with putty

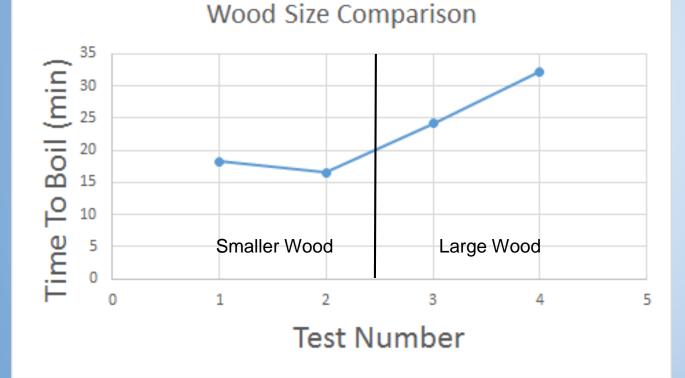
Feal: Dry Lumber Testing Standard wood for comparison tests

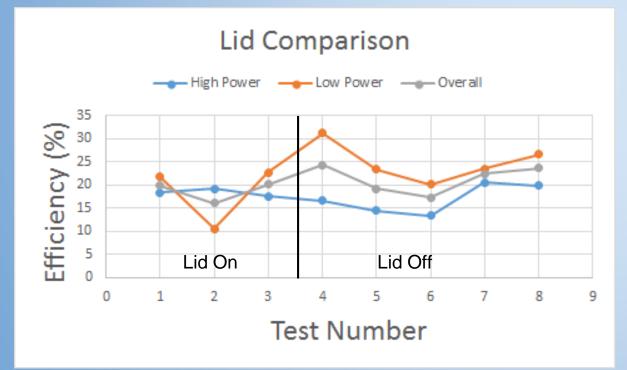

Feal: Wet Wood Testing Can the stove burn sticks of around 35% moisture?

Feal: Wet Wood Testing Cont.

Does moisture affect boil time?

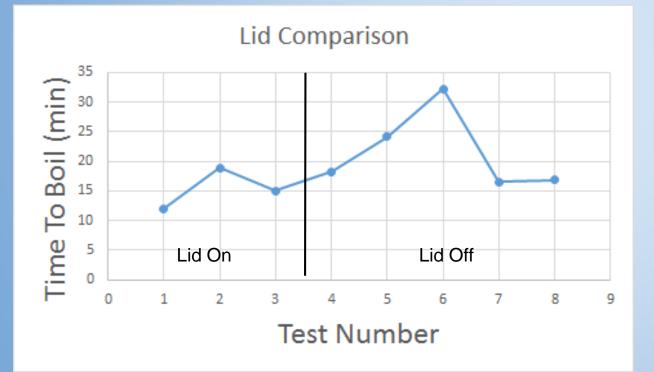
Feal: Large Wood Testing


Can the stove burn natural wood of 3' in length and 2.5" diameter?


Feal: Large Wood Testing Cont.

Does wood size affect boil time?

Feal: No Lid Testing


Can the stove boil and maintain an efficient boil with no lid on the pot?

Feal: No Lid Testing Cont.

Can the stove boil quickly with no lid on the pot?

Feal: Results

		Fuel Type			
		Stock Lumber, Dry	Natural, Dry	Natural, Wet	Large Natural, Dry
	High-Power	17.15	18.59	18.7	13.92
Efficiency (%)	Low-Power	13.24	27.39	24.73	21.77
	Overall	15.66	23.38	21.96	18.26
Time to Boil	Measured	18.75	16.5	15.38	28.25
(min.)	Corrected	20.07	17.38	15.94	28.18

- Clean burning with minimal smoke when fresh wood is added
- Average Overall Efficiency: 19.8%
- Average Corrected Time to Boil: 20.4 min

Indoor Air Pollution (IAP) Meter

- Measures the amount air particulates and carbon dioxide in the smoke
- Built a custom fume hood to capture all of the smoke
- Air at IAP meter proved too hot (~110°C) and IAP meter use was abandoned

Conclusions

	Objective	Actual
Cost	< \$445	\$315
Efficiency	> 30%	~20%
Clean	Eyes Nose Test	Yes
Wood Moisture	30-35%	32%
Boil Time	< 20 min	20.4 min
Large Wood	2.5" dia; 3' length	Yes
Self Feeding	Yes	Yes
Multiple Pots Sizes	Yes	Yes

Lessons Learned

- Standardized testing conditions
 - Multiple of same test is required
 - Use consistent ground (not open-air concrete)
 - Use standard wood, wood mass, and water mass
- Insulation and airflow under pot are vital
 - Add radiation shield inside vermiculite and increase insulation width
- Simplified stove construction
 - Crimp metal more, weld less
 - Labor costs are >50% of the total cost of the stove

Acknowledgments

Dale Andreatta

Nick Moses and Fred Colgan from InStove

Dale Andreatta

Nick Moses and Fred Colgan from InStove

[1]https://www.iea.org/publications/freepublications/publication/cooking.pdf

[2] http://web.mit.edu/adnane/www/adnan/portfolio/idd/stove.html

Questions?