Indoor Air Pollution and Respiratory Health among Honduran Women

M.L. Clark,1 J.L. Peel,1 S. Conway,2 J.B. Burch,3 S.J. Reynolds 1

1Colorado State University, Fort Collins, CO; 2Trees Water & People, Fort Collins, CO; 3University of South Carolina, Columbia, SC

This work was supported by the College Research Council, CSU; the Environmental Health Student Association, CSU; and SKC Inc.

ABSTRACT

Improved cookstoves have the potential to substantially reduce indoor air pollution. Studies examining the relationship between stove use and pulmonary function have been inconsistent, relying mostly on proxies of exposure, such as type of stove or fuel. We conducted a cross-sectional survey among 79 non-smoking Honduran women, 38 with traditional stoves and 41 with improved stoves with chimneys. For 59 of these women, particulate matter (PM2.5) was assessed via 8-hour indoor, outdoor, and personal monitoring. Carbon monoxide (CO) was assessed via 8-hour indoor, outdoor, and personal monitoring, and 10-min outdoor monitoring before and after indoor monitoring. Data were collected to examine the association between air quality measurements and respiratory function, while adjusting for important covariates.

EXPOSURE ASSESSMENT:

- PM2.5: Time-weighted 8-hr personal, indoor, and outdoor monitoring; PM2.5 means corresponding to this scale were 236, 119, 82, and 66 µg/m3, respectively.
- CO (carbon dioxide, temperature, relative humidity): 8-hr indoor monitoring and 10-min outdoor monitoring; CO means were 9.18, 3.29, 1.30, and 0.16 ppm, respectively.
- Housing Survey: Investigators recorded kitchen volume, building materials, and size of eaves and windows.

OUTCOME ASSESSMENT:

- Lung function: PEF and FEV1 portable PReo-1 peak flow meter (Pulmonary Data Services, Inc., CO); Participant performed 3 acceptable maneuvers and mean and maximum were recorded.
- Questionnaire: Standardized respiratory symptoms and diseases (American Thoracic Society)
- Height, weight, and waist circumference measured
- Finger-stick blood samples collected and dried on filter paper to measure a marker of inflammation (C-reactive protein, CRP)

BACKGROUND

• In 2000, more than 1.6 million deaths were attributed to indoor air pollution (IAP) exposures associated with the burning of solid fuels.
• Nearly 50% of the world’s population relies on biomass burning for cooking and heating.
• Studies examining the relationship between stove use and adverse health effects have been inconsistent, relying mostly on proxies of exposure, such as type of stove, fuel, or time spent cooking.
• Some indoor air pollution studies have demonstrated the importance of evaluating personal cooking practices and household parameters in addition to fuel and stove type.
• Few studies have quantitatively assessed both indoor air pollution levels and health effects while adjusting for potential confounders.

OBJECTIVES

• Measure personal, indoor, and outdoor CO and PM2.5 concentrations.
• Evaluate the contribution of domestic factors (fuel type, cooking practices, and housing conditions) on measured indoor air pollution concentrations.
• Develop a 4-level subjective stove scale and assess how well the scale predicts quantitative air quality measurements.
• Perform lung function measurements and ascertain respiratory symptom prevalence, and determine whether impaired lung function is associated with exposure to elevated personal/indoor air pollution concentrations.

METHODS

• Cross-sectional study of 79 women; 41 with improved (Justa) stoves with chimneys and 38 with traditional stoves.
• All 79 women: housing survey, questionnaire, lung function, and finger-stick blood sample.
• Additional measurements for a subset of 59 women: personal, indoor, and outdoor air quality monitoring.

Table 1. Demographic characteristics and respiratory symptoms among traditional and improved stove users (n=79).

<table>
<thead>
<tr>
<th>Measure</th>
<th>Traditional stove users (n=38)</th>
<th>Improved stove users (n=41)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>37.8 (15.7)</td>
<td>48.0 (13.0)</td>
<td>0.03</td>
</tr>
<tr>
<td>Body Mass Index</td>
<td>25.6 (2.5)</td>
<td>26.9 (2.2)</td>
<td>0.20</td>
</tr>
<tr>
<td>Height (inches)</td>
<td>60.0 (2.7)</td>
<td>59.0 (2.1)</td>
<td>0.08</td>
</tr>
<tr>
<td>Education (years)</td>
<td>3.9 (2.8)</td>
<td>3.9 (2.6)</td>
<td>0.94</td>
</tr>
<tr>
<td>Cough1</td>
<td>11 (29.0)</td>
<td>2 (4.9)</td>
<td><0.01</td>
</tr>
<tr>
<td>Phlegm2</td>
<td>7 (19.4)</td>
<td>3 (7.3)</td>
<td>0.18</td>
</tr>
<tr>
<td>Wheez3</td>
<td>9 (23.7)</td>
<td>0 (0)</td>
<td><0.01</td>
</tr>
<tr>
<td>Nasal irritation4</td>
<td>11 (29.0)</td>
<td>11 (26.8)</td>
<td>0.83</td>
</tr>
<tr>
<td>Headache5</td>
<td>16 (42.1)</td>
<td>5 (12.2)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

SUMMARY AND CONCLUSION

The usual presence of cough, wheeze, and headache was reported more frequently among traditional stove users as compared to improved stove users (p<0.01). Data collected will allow for examination of the association between air quality measurements and respiratory function, while adjusting for important covariates.

OUTCOME ASSESSMENT:

• Lung function: PEF and FEV1 portable PReo-1 peak flow meter (Pulmonary Data Services, Inc., CO); Participant performed 3 acceptable maneuvers and mean and maximum were recorded.
• Questionnaire: Standardized respiratory symptoms and diseases (American Thoracic Society)
• Height, weight, and waist circumference measured
• Finger-stick blood samples collected and dried on filter paper to measure a marker of inflammation (C-reactive protein, CRP)

FUTURE ANALYSES

• Utilize multivariate regression methods to determine which combination of parameters (stove quality, cooking habits, and factors affecting ventilation rates) most accurately predicts air quality measurements.
• Evaluate the multivariate relationship between personal and indoor air quality and health effects (respiratory symptoms, lung function, and C-reactive protein levels).
• Assess the effect of outdoor air pollution on the relationship between personal/indoor air pollution and respiratory health.

SUMMARY AND CONCLUSION

• The usual presence of cough, wheeze, and headache was reported more frequently among traditional stove users as compared to women with improved stoves (Table 1).
• Women with traditional stoves reported more severe, current symptoms, including cough and eye irritation, as compared to women with improved stoves (data not shown).
• Varying levels of indoor air pollution measured in homes with improved stoves support the use of a multi-level stove scale (Figure 1).
• Use of a stove scale in conjunction with factors affecting ventilation could provide a cost-effective alternative to air quality monitoring.
• Results may provide the foundation for future intervention strategies and large-scale prospective epidemiologic investigations.

SPECIAL THANKS to the participating women for being such gracious hosts and to Mara Fernandez, Shannon Oliver, Benjamin Osorto, and the staff of The Honduran Association for Development for their dedication to this project and their compassion for the people of Suyapa and Santa Lucia.